If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35=-2v+v^2
We move all terms to the left:
35-(-2v+v^2)=0
We get rid of parentheses
-v^2+2v+35=0
We add all the numbers together, and all the variables
-1v^2+2v+35=0
a = -1; b = 2; c = +35;
Δ = b2-4ac
Δ = 22-4·(-1)·35
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-12}{2*-1}=\frac{-14}{-2} =+7 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+12}{2*-1}=\frac{10}{-2} =-5 $
| 6(5x+10=-6(-8x-7) | | 17x-3-x-9=68 | | -4x-1-x=-11 | | 24+0.44x=191.69x | | 3x2=20x-7 | | 6(10x+7)=-6(-9x-3) | | v-7=19+12 | | 10x-x-2=24 | | 2=8+3w | | -23=v-9 | | –8q=8−9q | | 2x+1 3+x−1 11=1 | | y+49=180 | | T^2-2t+1=17 | | 52=-13n | | 5c-4+c=50 | | 3b=–7+2b | | 12a=-193 | | -4u+2u-12=-14 | | y-15=1 | | 16=6+x÷2 | | 50+(5x-7)=180 | | 13-5p=11p-19 | | 5x-9x+11x=-21 | | -7x-2x=-9 | | (5n)^3=5^12 | | 7q+15=-3q-25 | | 3(8z-12)=12 | | 5+n=27 | | -29=-7p+6 | | 7(22+x)=70 | | 3t+10(t-1.5)=24 |